

StringPheno 2013 17th July, Hamburg

Work in collaboration with A. Borghese & D. Roest

R-symmetry: U(1) yes or no?

- Dimensional reduction of 10D SYM produces N=4 SYM

[Brink, Scherk & Schwarz '76]

reduction = fermi masses + scalar potential

R-symmetry: U(1) yes or no?

- Dimensional reduction of 10D SYM produces N=4 SYM

[Brink, Scherk & Schwarz '76]

$$L_{10D} = -\frac{1}{2}F^2 + \frac{i}{2}\bar{\lambda} \not D\lambda$$

$$L_{10D} = -\frac{1}{2}F^2 + \frac{i}{2}\bar{\lambda} \not D\lambda$$

$$L_{10D} = -\frac{1}{4}g^2 (f \phi_{ij}\phi_{kl})^2$$

> Reality condition on the 6 scalars:

reduction = fermi masses + scalar potential

$$\phi_{ij}^* = \phi^{ij} = \frac{1}{2} \epsilon^{ijkl} \phi_{kl}$$
 R-symmetry group is SU(4) and not U(4)!!

R-symmetry: U(1) yes or no?

- Dimensional reduction of 10D SYM produces N=4 SYM

[Brink, Scherk & Schwarz '76]

$$L_{10D} = -\frac{1}{2}F^2 + \frac{i}{2}\bar{\lambda} \not D\lambda$$

$$L_{10D} = -\frac{1}{2}F^2 + \frac{i}{2}\bar{\lambda} \not D\lambda$$

$$L_{10D} = -\frac{1}{2}g(f\phi^{ij}\bar{\lambda}_i\lambda_j + c.c)$$

$$-\frac{1}{4}g^2(f\phi_{ij}\phi_{kl})^2$$

> Reality condition on the 6 scalars:

reduction = fermi masses + scalar potential

$$\phi_{ij}^* = \phi^{ij} = \frac{1}{2} \epsilon^{ijkl} \phi_{kl}$$
 R-symmetry group is SU(4) and not U(4)!!

[Cremmer & Julia '78, '79]

- Analogous results for N=8 gauged SUGRAs from M/Type II reductions with fluxes
 - $[f \leftrightarrow H_3, F_p, \omega, \dots]$

> Reality condition on the 70 scalars :

$$\phi_{IJKL}^* = \phi^{IJKL} = \frac{1}{24} \epsilon^{IJKLMNPQ} \phi_{MNPQ}$$
 R-symmetry group is SU(8) and not U(8) !! $I = 1, \dots, 8$

[... see Dall'Agata's & Inverso's talks]

- The theory contains 56 = 28 (electric) + 28 (magnetic) vectors spanning a 28-dimensional gauge symmetry group $G \subset E_7$

- The theory contains 56 = 28 (electric) + 28 (magnetic) vectors spanning a 28-dimensional gauge symmetry group $G \subset E_7$

[Dall' Agata, Inverso & Trigiante '12]

- Recently, an extra U(1) rotation outside the R-symmetry group SU(8) has been identified and used to orientate G inside the electromagnetic space Sp(56)

$$D_{\mu}\phi = \partial_{\mu}\phi + \left(\cos\omega A_{\mu}^{\text{(electric)}} + \sin\omega A_{\mu}^{\text{(magnetic)}}\right)\phi$$

> Therefore: $\omega = 0$ (electric), $\omega = \frac{\pi}{2}$ (magnetic) and $0 < \omega < \frac{\pi}{2}$ (dyonic)

- The theory contains 56 = 28 (electric) + 28 (magnetic) vectors spanning a 28-dimensional gauge symmetry group $G \subset E_7$

[Dall' Agata, Inverso & Trigiante '12]

[Dibitetto, A.G & Roest '11]

- Recently, an extra U(1) rotation outside the R-symmetry group SU(8) has been identified and used to orientate G inside the electromagnetic space Sp(56)

$$D_{\mu}\phi = \partial_{\mu}\phi + \left(\cos\omega A_{\mu}^{\text{(electric)}} + \sin\omega A_{\mu}^{\text{(magnetic)}}\right)\phi$$

> Therefore: $\omega = 0$ (electric), $\omega = \frac{\pi}{2}$ (magnetic) and $0 < \omega < \frac{\pi}{2}$ (dyonic)

GOALS:

- 1) Using the embedding-tensor, compute the ω -dependent scalar potential and analyse its critical points
- 2) Compute fermi masses and relate them to Type IIB generalised flux backgrounds via the embedding-tensor/flux dictionary [de Wit, Samtleben & Trigiante '04] [Aldazabal, Cámara, (Rosabal) & Andrés, Graña '08, '10]

Example 1 : G_2 -invariant sector of G = SO(8)

- Truncate most of the 70 scalars and look for critical points of $V(\phi)$ with large residual symmetry groups $G_0\subset G$

Example 1 : G_2 -invariant sector of G = SO(8)

- Truncate most of the 70 scalars and look for critical points of $V(\phi)$ with large residual symmetry groups $G_0 \subset G$

critical point	residual sym G_0	SUSY	Stability
•	SO(8)	$\mathcal{N}=8$	\checkmark
	$SO(7)_{-}$	$\mathcal{N} = 0$	×
♦	$SO(7)_{+}$	$\mathcal{N} = 0$	×
A	G_2	$\mathcal{N}=1$	\checkmark
♦	G_2	$\mathcal{N} = 0$	\checkmark

Example 1 : G_2 -invariant sector of G = SO(8)

- Truncate most of the 70 scalars and look for critical points of $V(\phi)$ with large residual symmetry groups $G_0 \subset G$

- > Mass spectra insensitive to ω
- $> \frac{\pi}{4}$ -periodicity with transmutation of $SO(7)_{\pm}$
- > Runaway of points at $\omega = n \frac{\pi}{4}$

critical point	residual sym G_0	SUSY	Stability
•	SO(8)	$\mathcal{N}=8$	\checkmark
	$SO(7)_{-}$	$\mathcal{N} = 0$	×
♦	$SO(7)_{+}$	$\mathcal{N} = 0$	×
A	G_2	$\mathcal{N}=1$	√
♦	G_2	$\mathcal{N} = 0$	\checkmark

- Three embeddings $SO(4)_{v,s,c}$ related by Triality :

Example 2 : SO(4) invariant sectors of G = SO(8)

- Three embeddings $SO(4)_{v,s,c}$ related by Triality:
 - i) the vectorial embedding: $8_v = (1,1) + (3,1) + (1,1) + (1,3)$

$$\omega \in [0, \frac{\pi}{4}]$$

			Warner	'84	
[Fischba	cher, Pil	ch &	Warner	' 10	-

critical point	residual sym G_0	SUSY	Stability
•	SO(8)	$\mathcal{N}=8$	\checkmark
*	$SO(4)_v$	$\mathcal{N} = 0$	\checkmark

- Three embeddings $SO(4)_{v,s,c}$ related by Triality:
 - i) the vectorial embedding: $8_v = (1,1) + (3,1) + (1,1) + (1,3)$

$$\omega \in [0, \frac{\pi}{4}]$$

[Warner '84] [Fischbacher, Pilch & Warner '10]

critical point	residual sym G_0	SUSY	Stability
•	SO(8)	$\mathcal{N}=8$	\checkmark
*	$SO(4)_v$	$\mathcal{N} = 0$	\checkmark

> NO ω -dependence at all !!

ii) spinorial (upper) & conjugate (lower) embeddings : $8_{s/c} = (1,1) + (3,1) + (1,1) + (1,3)$

critical point	residual sym G_0	SUSY	Stability
•	SO(8)	$\mathcal{N}=8$	\checkmark
*	$SO(4)_s$	$\mathcal{N} = 0$	×
*	$SO(4)_c$	$\mathcal{N} = 0$	×

ii) spinorial (upper) & conjugate (lower) embeddings : $8_{s/c} = (1,1) + (3,1) + (1,1) + (1,3)$

- > Mass spectra sensitive to ω
- $> \frac{\pi}{4}$ -periodicity restored by Triality
- > Runaway of points at $\omega = n \frac{\pi}{4}$

critical point	residual sym G_0	SUSY	Stability
•	SO(8)	$\mathcal{N}=8$	\checkmark
*	$SO(4)_s$	$\mathcal{N} = 0$	×
*	$SO(4)_c$	$\mathcal{N} = 0$	×

Runaway... but where to?

Going to the origin: If a critical point is found at $\phi = \phi_0$ with a residual symmetry G_0 , it can always be brought to $\phi_0 = 0$ via a duality transformation. After this, the quantities in the theory (e.g. fermi masses) will adopt a form compatible with G_0

[Kodama & Nozawa '12]

Going to the origin: If a critical point is found at $\phi = \phi_0$ with a residual symmetry G_0 , it can always be brought to $\phi_0 = 0$ via a duality transformation. After this, the quantities in the theory (e.g. fermi masses) will adopt a form compatible with G_0

Applicability: Pattern of fermi masses at $\phi_0 = 0$ preserving $G_0 = SO(4)_s$

$$[\ I \rightarrow i \oplus \hat{i}\]$$

i) gravitino-gravitino mass $\mathcal{A}^{IJ}(\phi_0)$ \Longrightarrow $\mathcal{A}^{ij} = \alpha \ \delta^{ij}$, $\mathcal{A}^{\hat{i}\hat{j}} = \alpha \ \delta^{\hat{i}\hat{j}}$

$$\mathcal{A}^{ij} = \alpha \ \delta^{ij} \quad , \quad \mathcal{A}^{\hat{i}\hat{j}} = \alpha \ \delta^{\hat{i}\hat{j}}$$

> Four parameters $\alpha, \beta, \gamma, \delta \in \mathbb{C}$

Runaway... but where to?

Going to the origin: If a critical point is found at $\phi = \phi_0$ with a residual symmetry G_0 , it can always be brought to $\phi_0 = 0$ via a duality transformation. After this, the quantities in the theory (e.g. fermi masses) will adopt a form compatible with G_0

Applicability: Pattern of fermi masses at $\phi_0 = 0$ preserving $G_0 = SO(4)_s$

$$[\ I \rightarrow i \oplus \hat{i}\]$$

i) gravitino-gravitino mass $\mathcal{A}^{IJ}(\phi_0)$ \Rightarrow $\mathcal{A}^{ij} = \alpha \ \delta^{ij}$, $\mathcal{A}^{\hat{i}\hat{j}} = \alpha \ \delta^{\hat{i}\hat{j}}$

> Four parameters $\alpha, \beta, \gamma, \delta \in \mathbb{C}$

Solving QC & EOM: One-parameter family of theories compatible with $G_0 = SO(4)_s$

$$\alpha(\theta)$$
, $\beta(\theta)$, $\gamma(\theta)$, $\delta(\theta)$ \Rightarrow $V(\theta) = -6 \left(1 + \cos(4\theta) + \sqrt{2}\cos(2\theta)(\cos(4\theta) + 5)^{1/2}\right)$

- The whole story of a solution preserving $G_0 = SO(4)_s$ can be tracked

- The whole story of a solution preserving $G_0 = SO(4)_s$ can be tracked

$$i) \quad 0 \le \theta < \frac{\pi}{6} \quad \rightarrow \quad G = SO(8)$$

[unstable AdS₄ solutions]

- The whole story of a solution preserving $G_0 = SO(4)_s$ can be tracked

$$ii)$$
 $\theta = \frac{\pi}{6} \rightarrow G = SO(2) \times SO(6) \ltimes T^{12}$

[unstable AdS₄ solution]

- The whole story of a solution preserving $G_0 = SO(4)_s$ can be tracked

$$iii)$$
 $\frac{\pi}{6} < \theta < \frac{\pi}{4} \rightarrow G = SO(6,2)$

[unstable AdS₄ solutions]

- The whole story of a solution preserving $G_0 = SO(4)_s$ can be tracked

$$iv) \quad \theta = \frac{\pi}{4} \quad \to \quad G = SO(3,1)^2 \times T^{16}$$

[Mkw solution with flat directions]

- The whole story of a solution preserving $G_0 = SO(4)_s$ can be tracked

0

$$v)$$
 $\frac{\pi}{4} < \theta \le \frac{\pi}{2} \rightarrow G = SO(4,4)$

[dS₄ solutions with tachyon dilution]

[Dall'Agata & Inverso '12]

Final remarks

- Electromagnetic U(1) rotations pick up a physically relevant direction in the space of the embedding tensor deformations and provide new vacua of $\mathcal{N}=8$ supergravity with interesting properties: increase of critical points, partial $\mathcal{N}=2\to\mathcal{N}=1$ breaking, stability without SUSY, ...
- Small residual symmetry groups like SU(3) & SO(4) show ω -dependent mass spectra. Triality restores $\frac{\pi}{4}$ -periodicity.
- Critical points running away at $\omega = n \frac{\pi}{4}$ in one theory, show up in another. The entire story of a solution can be tracked by computing fermi masses in the GTTO approach
- Tachyon dilution around AdS/Mkw/dS transitions.
- All these solutions can be obtained as $\mathbb{Z}_2 \times \mathbb{Z}_2$ Type IIB orientifolds with non-geometric fluxes (both electric and magnetic). Lifting to M-theory including vectors from A₃ and A₆? And oxidation to DFT?

Thank you all !!